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Abstract—Total variance represents the first advance-
ment in the estimation of an oscillating signal’s long-term
frequency stability since the conventional Allan variance
estimator. It is called “Totvar” (pronounced tot’-vir) for
short. Its commonly reported square-root is the total devia-
tion function called “Totdev” (t6t‘-d&v). Totdev efficiently
extracts broadband FM oscillator noise levels and types
commonly encountered at long-term T-averaging times,
even though these are difficult to measure. The notable
advantages of Totdev include: significantly improved con-
fidence for estimating long-term frequency stability, lower
sensitivity to the removal of linear frequency drift, and ex-
act decomposition of the sample variance of frequency resid-
uals.

A review of some methods of improving the estimation
of long-term stability is presented. Concepts of data ex-
trapolation and smoothing are developed and linked to the
definition of Totdev. The approach to interpreting a o vs.
7 stability plot of Totdev is given and is identical to that
using the Allan deviation. Formulas are given for comput-
ing confidence interval at long term and for computing an
easily removed, slight negative bias. The last section shows
how Totdev is the first frequency-stability statistic that is
unified to the more readily understood, but often inappro-
priate, standard deviation by an exact decomposition.

I. INTRODUCTION

HIS writing assumes some familiarity with the Al-
lan variance estimator of frequency stability called
“Avar,” or more conveniently its usually reported square
root, “Adev” [1]-[5]. For long averaging times (greater
than 10% of a whole data run), Totdev is a recommended
substitute for Adev because it is an improved estimator
of frequency stability at long-term 7-values while essen-
tially computing the best Allan deviation estimator (the
maximum-overlap estimator) at short- and mid-term 7-
values [6]. For example, for computations at longest-term
averaging time, or 50% of the whole data run, the equiva-
lent degrees of freedom (or edf, used to quantify an estima-
tor’s confidence) shows an increase from 1 to 1.5, 2.1, and
3 with commonly encountered FM noises of random walk
(RWFM), flicker (FLFM), and white (WHFM) noise [7]-
[9]. Totdev has an easily removed slight negative bias as-
sociated with RWFM and FLFM noises.
This paper is a quick guide to Totdev’s statistical ap-
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proach. In Section II, the typical measurement method-
ology using Adev is described. Looking ahead, Totdev is
basically Adev computed on a periodically extended ver-
sion of a data run. So why is Totdev better than Adev,
since its computation simply reuses the same data? I show
in Sections III, IV, and V that, in reality, no periodic as-
sumption whatsoever is made about the data in the appli-
cation of Totdev, but that its apparent periodic methodol-
ogy “smooths” statistical results by averaging additional

" numbers of normally unused, yet completely consistent,

frequency-stability estimates, called Totdev’s “surrogate”
estimates. This reduces the dispersion in results.

Totdev’s important beneficial properties also have sim-
ple forms given in Sections VI and VII. For example, the
normally ponderous task of computing confidence intervals
is remarkably simple when using Totdev. Its bias relative
to the Allan deviation is modest and has a simple for-
mula. Based on these considerations, Totdev can be eas-
ily and profitably used to extract additional information
about long-term stability, information that is often lost by
the use of the normal Allan deviation.

In Section VIII, I describe an important connection be-
tween the standard deviation of frequency fluctuations and
the usual frequency stability plot using Total deviation,
what is called a “o vs. 77 plot. We can treat Totdev as a
full-octave spectrum analyzer whose filter response is given
in Section V. We extract exactly /2 times the standard
deviation by summing values of Totdev in commonly re-
ported dyadic 7-averaging times, meaning increments of
1,2, 4, ..., 27 where positive integer J depends on the
length of the data run, along with one additional term that
represents variations at all dyadic averaging times greater
than the usual last one at 27. This feature yields a means
of reporting the extent of frequency variations in a data
run left unaccounted for in a frequency stability plot using
Totdev. This property distinguishes Totdev from Adev,
and I explain why it is useful.

I1. MEASURING FREQUENCY STABILITY

If the time or the time fluctuations between two oscil-
lators can be measured directly, an advantage is obtained
over just measuring frequency fluctuations. The reason is
that we can readily see time behavior from actual measure-
ments, and frequency can easily be inferred from time. To
avoid measurement-system dead time and simultaneously
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measure the underlying frequency stability of the best os-
cillators often nearly at the same frequency, we use the
dual mixer time difference (DMTD) scheme [3]-[5]. Mea-
surement samples of time fluctuations occur at a rate fs
having an interval 75 = f Given a sequence of time de-
viates {z, : n = 1,..., N} with a sampling period be-
tween adjacent observatlons given by 79, we define the
mrp-average fractional frequency deviate as:

1m
"

since, in practice, §,(m) is computed from z,, and Z,,—,.
Note that yn = 2 (2 — Zn_1), and to be clear, {yn} =
{gn(1)}, that is, y,-values are also averages. We regard
{gn(m): n = m,..., Ny} as a finite realization of a
stochastic process {¥,,(m): n = 0,41, £2,...}. If we make
E{gn(m)} = 0 by a proper translation, the standard vari-
ance is:

— (Tn = Tn-m), (1)

’!TL’TO

o(m) = E{ga(m)}, (2)

where E throughout this paper means an expected aver-
age or infinite mean. Even in the most stable oscillators,
{7, (1)} can be a realization of a nonstationary frequency
noise such as FLFM and RWFM. Because frequency fluc-
tuations have a nonstationary average, the sample stan-
dard variance can be arbitrarily biased dependent on when
and how long measurements are taken. Besides being un-
reliable, the standard variance does not offer a simple way
to distinguish oscillator noise types; hence, a way to diag-
nose the source or cause of frequency instability. Allan [1]
devised a convenient variance of oscillator frequency stabil-
ity that always converges as the first difference of FLFM
and RWFM time-series processes becomes stationary in
a mean-squared sense and easily distinguishes a common
range of noise types by straight-line slopes vs. mmy (on a
log-log plot). Consequently, an IEEE subcommittee rec-
ommended that the characterization of frequency stability
be defined by [2]:

o3m) = 5B {[Jusm(m) — gu(m))*}

and E {[§nm(m) — gn(m)]} = Dr(m), 3)

where Dr(m) is a linear trend or linear frequency drift that
is estimated and removed, or, with justification, assumed
to be 0. Its estimation and removal is problematic to es-
timating the underlying noise characteristics in ai(m) at
long-term or large m-values, an issue discussed later. If the
first difference {7, (1) —#n—1(1)} is stationary, the stochas-
tic process is such that the expectations above depend on
the averaging time index m, but are not dependent on the
time index 7n; that is, the expectation value does not de-
pend on when we measure. Note that each point estimate
of the Allan variance (the first term in curly braces) is
computed at m but requires a 2m interval.
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A hat “*” denotes a sample estimate of a function.
The usual sample Allan variance 65 (7, T) involves averag-
ing time 7 = m7p and sample data run 7. As previously
mentioned, it is called Avar and is defined by [3], [5]:

62(1,T) = Avar (m, 70, Ney) =
Ny—m

Ty O (Fntm(m) = Gn(m))?

and by (1) is equal to

1 Ny—m 9
T -2z, +x,_
2 (m7o)* (N, — 2m) n§+1( e nF ) ’(5)

for 1 < m < ]—\%——1- Summand terms in (5) involve a
second difference of {z,} known as a central difference
when expressed symmetrically over a 2mry span as in (5).
BEach central difference consists of only a first, middle, and
last a, value, or z,’s taken in triplet, then subsequently
squared and averaged. Having removed drift and other de-
terministic error sources, an oscillator’s random FM noise
will have triplets that on average fall on a straight line
with a Gaussian distribution, as pointed out by Allan be-
cause these central differences now comprise a stationary
process of independent components. Their variance thus
has a x? (chi-square) distribution and, consequently, be-
comes skewed low if faced with few samples. This is sim-
ply because any one triplet is more likely to fall nearly
on a straight line than not. Thus, a one-sample central-
difference variance is often uncharacteristically low.

1II. WAYS TO INCREASE THE NUMBER
OF STATISTICAL SAMPLES

One way to get around the small-sample problem as-
sociated with Avar at longest-term 7-values is to call on
a useful relationship between the Allan variance and the
classical standard variance o%(m) as

o2(m) = 2|02(m) — o*(2m)|. (6)

If 2m is the length of the whole data run and if we know
nothing more, the standard variance (the so-called biased
formulation) is given by §2(2m) = %2(2m), which can be
computed with good confidence having 2m sample values.
This global variance can be regarded as the “true” vari-
ance, or o2(2m) in (6). Up to m samples or half the data
run, we have 62(m) = {g%(m)} (and, of course, it is also
biased) and (6 ) yields an estimate of the Allan variance,
or 62(m) by 62(m) = 2|6%(m) — 0*(2m)|. A difficulty lies
in the fact that using both 6%(m) and the global vari-
ance §2(2m), usually causes 62(mn) to be seriously biased
low. Because by a tlme—reversal invariance, {§2(m)} can
be either the first or last half of the whole data run, by ex-
tension any {y2(m)} segment is allowable and the largest
possible §2(m) is often chosen for 62(m). This gives an
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upper-bound value using (6), which, if plausible, is ac-
cepted as an estimate of the Allan variance for 7 = T'/2
or half the full length of the data run and that may off-
set the negative bias of (6). Use of this ad hoc procedure
can be justified when 02 (m) appears uncharacteristically
low when solely using Avar (4), (5). But this practice is
subjective and ultimately flawed because experimenter’s
expectations govern “plausibility;” however, it hints at a
possible alternative to Avar.

Yet another approach is to correct for the bias in a com-
putation of the classical standard variance, because this
variance has, by comparison to Avar, many more sample
values, hence good confidence at long term. The problem
is that its bias is a function of which noise type is present,
and Avar, with its relatively poor confidence, must be used
to determine this noise type. So the approach ends up ac-
tually netting poorer overall confidence compared to using
the Avar equations alone.

Another technique is to exploit the time fluctuations
in and around Avar’s aforementioned central-difference
triplets on the belief that we are at liberty to choose a
range of neighboring quantities that can serve as alter-
native or surrogate values and average them to obtain a
better estimator 67 (7, T'). Recall that Avar measures only
a symmetry, or a lack thereof, in equispaced triplet values
of Zp+m. The “surrogates” originate in the fact that we
can apply a consistency hypothesis to measures of other
symmetry in the same span. “Consistency” means that
averages of certain other individual estimates, in this case
neighboring, similar measurements of symmetry that I will
describe next, can equally serve as an estimate. This is the
principle behind statistical “smoothing.”

For example, an approach that introduces the concept
of consistency requires a slightly altered view of Avar, that
is, Avar as a measured variance of an idealized, simple lin-
ear interpolator. Here we regard the central difference op-
eration mentioned in Section IT as a linear predictor, whose
prediction uncertainty becomes Adev if we extrapolate the
data to expected values outside the actual measurement,
namely into the future [10].

To illustrate the concept, note that the form of Avar
in (4) originates because values of {7.(m)} are actually
measured asymmetrically with respect to {z,} values, that
is, post facto, in which g,(m) = —

- m—m(ﬂjn — ZL'n._m). For
symmetry, however, we can substitute:

. 1
yn(m) = mTo (wTH'Izﬂ - xn~-’—;—) . (7)
By a linear interpolation, g, (m) = average of:
1 1 .
pr (Zr—m — zn) and pr (Tn — Trtm), (8)

whose result is 5 (Tntm — Tnm), OF equivalently
Jn(2m). In other words, viewing Avar’s central-difference
operation as a linear interpolator, the median value z,
drops out in the average §2(m), and we can use §2(m)
defined symmetrically in (7) in place of g2 (2m) and vice
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versa. That is, the usual two asymmetrically computed
values of §,(m) in (4) can be substituted with g3 (2m) =
go(m) to also compute (4). The Allan variance ai(m) has
an implied use of one linear-interpolation value in a 2m in-
terval. We can extend this idea to computations at g, (2m),
Pn(4m), §n(8m), and so forth.

Consider for example the usual Avar estimator com-
puted at m = 2 for a segment of data consist-
ing of a series of five equispaced time-error measure-
ments {z1, T2, T3, Z4, %5 }. We can compute three (overlap-
ping) average frequency errors as {7:1(2),52(2),33(2)} =
{23 — 21,4 — T2, %5 — w3}, but F2(2) is not used in
(43, (5). Additionally by a linear interpolation, §5(2) =
5 [(zs — x3) + (23 — @1)], which is also not used, yet it
is consistent with the other values. At this point we have
four estimates of §(2), and Totdev uses all of them in-
stead of only the two used in Adev. To accomplish this, the
total deviation approach uses linear extrapolation of the
original data run to form the two-sided, mirror-reflection
data extension in the precise definition of Totdev given
in Section IV. This extension of the whole data run re-
sembles a periodic extension (one which originates from
a Fourier-based periodic assumption) and so is confused
with statistical treatments that assume Fourier-frequency
components as the basis of the data. But actually, the total
approach is based on no periodic assumption whatsoever.

The idea of extending an oscillator’s measured
frequency-difference data in a periodically repeating, or
circularized, fashion in the time domain originated because
Avar is likely to “collapse” to 0 at long averaging times.
Originally total variance started with the idea to simply
time-shift the original data by 1/4 of the whole data run,
compute a so-called “quadrature” Avar, and average this
with the standard Avar [11]. This time shift requires some
kind of extension and straight periodicity worked fine. This
is justified recalling that in (6), estimate 62(2m) must be
regarded as the “true” variance o2(2m) if the data run
is length 2m. This implies that the data recur infinitely
if the ergodic property is assumed to extend outside the
data run [12]. Averaging the usual Avar with the quadra-
ture Avar cleverly avoided the possibility of a long-term
collapse-to-zero of the usual o vs. 7 frequency stability
plot. The improvement in confidence was only slight, but
the technique achieved dramatically reduced sensitivity to
the removal of an overall drift estimate [13]. Because a
quadrature Avar is a consistent estimator of original Avar,
it follows that recomputations at every 7y increment also
are consistent. Long-term estimation of the Allan variance
was significantly improved by results using a straight circu-
larization technique on original data {z,}, but this tech-
nique could not work in the presence of RWFM and/or
significant drift because it introduced gross bias [11], [14].
On discovering that the application of a two-sided mirror-
reflection extension instead of a straight periodic exten-
sion handled RWFM, bias was significantly reduced while
still preserving improved confidence of the final estimate,
and now a total approach was applicable across Avar’s full
range of power-law noise types [7}—[9], [13].
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Fig. 1. Circular extension of the original z(¢) data set of duration
T for computation of Totvar. (a) Extension of a phase record by
“reflection” at both ends; (b) circular representation of extended
phase record.

IV. DEFINITION OF TOTDEV
Total variance, or Totvar, is defined as:

Totvar(r, T) = Totvar (m, 19, N,) =

1 Np—1 " 9
2(m7_0) ( __2) 7;2 (xn—m"2m +wn+m) ) (9)

for 1 < m < N, — 1 where an extended virtual sequence
{z#} is derived as follows: for n = 1 to N, let 2# = xy;
for j=1to N, — 2 let

# ) # —
TI_; =281 — T4y, Ty,4; = 2N, — TN,

(10)

Totvar also can be defined in terms of extended normalized
frequency averages by:

Totvar(7,T) = Totvar (m, 79, Ny + 1) =

e m]

T e

n=2

where g (m) = (xf o — mﬁ) / (m7g). Construction of
the extended virtual sequence given by (10) is illustrated
in Fig. 1 and is called extension by reflection. Totdev values
are the square root of Totvar values. Totdev is the current
IEEE-recommended statistical test of oscillator frequency
stability at long-term averaging times, namely, those 7-
values beyond 10% of the length of the whole data run [6].

Rather than extending the original vector {z,} and ap-
plying the straight second difference, we can alternatively
resample within the original vector. Applied to Totvar,
this exercise only points out that the procedure used in
the sampling function is intricate and not very intuitive
because sampling on {z,} is no longer in terms of equi-
spaced triplets spaced by 27 [8]. It does, however, show
that a large number of surrogate values emerge from Tot-
var’s data extension. Averaging a larger number of esti-
‘mators in this fashion is an example of “data smoothing,”
which is the key to how Totvar reduces the variability in
its result.
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V. CONCEPT OF SMOOTHING

All of the aforementioned ideas, including the method
of computing Totdev, are ways to “smooth” a statisti-
cal result. Smoothing means that we somehow incorpo-
rate consistent, neighboring results in a weighted average
to reduce the variability of a particular result. For exam-
ple, other consistent estimators for Avar can be derived
from its properties with measurement dead time. We can
readily compute two estimates: one in which we intention-
ally introduce dead time (and positive bias), and another
having equal-duration “overlap” time (and negative bias).
Then an average of the two estimates is only modestly
biased to first approximation. It would be a reasonable
and consistent estimate that is not ordinarily considered.
This concept links to Totdev in the following way. Using a
symmetry argument and assuming that drift has been re-
moved, let us define a useful expectation that is not only
independent of values of the time index n, but also nearly
independent of averaging time index m. Redefine g, (m) as
centered at n by:

m_]
Fn(m) = Z Yn—j + Zyn+_7 > (12)
or in terms of {z,} values, gy (m) = mTO = (Tpam — Ty ),

for m even. Random FM noise processes also center before
and after n such that,
E {gn-k% (m) ~ gn(m)} =E {?jn—% (m

) - gn(m)} =

E {gn+%(m) - gn—%(m)} =0, (13)

and we can derive the symmetric form of the Allan variance
as:

2, 1 _ _ 2
02(m) = 5B { (G5 (m) — Fu_z ()]} "

Substitute s for m in (12), and define (14) in terms of 7, (s)
to obtain:

1 _
Jgo (m,s) = —2—E { [Gnsm(s) — n__(s)] } 5)

The separation between any two § samples in (15) is
still m as in (14), but now we are in a position to pos-
itively and negatively vary or symmetrically “modulate”
the averaging-time s of each 7 in the neighborhood of its
usual value m by a small range, say, £4. This has the effect
of smoothing 02(m) by using other nearby consistent val-
ues in addition to the usual values of gy, 4 m (M) —gn—= (m)
as described in Section IV. We increment n, repeat the pro-
cess, square differences and average to obtain a smoothed
value of §2(m) denoted by [15]:

02, (m, s) = smoothed version of Ug(m). (16)
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This smoothing operation picks up additional estimates of
o2(m)asm increases, improving the usual max-overlap Al-
lan variance estimate, especially if that estimate is unchar-
acteristically high or low. The (15), and hence o2.(m, s),
differ from the Allan variance because each term consti-
tuting a 2m interval yields its result dependent on m and
s. This is because the difference pair of average frequen-
cies Jntm (8) — Yn—z (s) may be separated when s < m or
overlapped when s > m. They are conjoined, or adjacent,
only when 6 = 0, making s = m, which is precisely the
unsmoothed Allan variance case. With WHFM, o2.(m, s)
is unbiased with respect to o2(rn) and is biased negatively
with FLFM and RWFM. The bias depends on the depth of
modulation § relative to m but is minimized if § = %, or a
full range given by no more than m itself. This restriction
also serves to control o2.(m, s) in a reasonable manner,
but there is a problem with smoothing at the full data run
of duration T having all N, points. The problem is that
our ability to smooth becomes more and more restrictive
as m — N, (or equivalently, as averaging time 7 — T,
the whole data run) because the extent with which we can
modulate m and increment 7 is bounded by the beginning
and end points of a data run of fixed length N,. To smooth
to the end of the data set requires an extension of the data
set beyond its normal run. It is here we interpret Avar as
the variance of a linear interpolator, as developed in the
previous section. In principle, “Total” estimators are based
upon the hypothesis that, for segment {z(¢) : to <t < T},
extensions for ¢t < tg and ¢ > T can be formed by extrapo-
lating the data, and in the Avar case, tacking on reversed
versions of {z(t)} at the beginning and end of this part of
the function.

As mentioned previously, the original total estimator,
and one which did not work well, derived from experiments
in which the usual max-overlap Avar estimator was applied
to simple periodic extensions of the original data [11]. Tot-
var’s data extension by reflection, or tacking on a reversed
version to both ends of the data segment, solved the prob-
lem of gross bias with RWFM, even though it was not
fully understood why. Part of the confusion is because it
was believed that Totvar somehow used the assumption
of periodicity in the data coupled with the fact that it is
actually a “hybrid” statistic in the sense that it combines
the usual sample Allan variance in short- and medium-
term with the confidence improvements at long term. More
recently, the current understanding of smoothing and ex-
trapolating has led to a new nonhybrid statistic called the
modified total variance designed to extract the full range
of both PM (phase modulation) and FM noises [16] and is
a significant improvement on the modified Allan variance.
The total approach is being tried on other time statistics
such as classes of structure functions and the Hadamard
variance [17].

To illustrate (9) and (10) as a hybrid statistic, con-
sider the case of m = 1. The extension of {27} needs only
to be 79 longer than {z,} at both ends to compute (9).
Thus (9) is essentially the standard Allan estimator (5).
As m increases, the extension needs to be longer until at
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TABLE 1
COEFFICIENTS FOR' COMPUTING (17) AND (18), NORMALIZED BIAS
AND EDF oF TOTVAR.

Noise a b c

WHFM 0 1.500 0

FLFM 0.481 1.168 0.222

RWFM  0.750 0.927 0.358
TABLE II

TABULATED QUANTITIES FOR T = T'/2.

Noise nbias (T'/2) edf(T/2)

WHFM 0 3.000

FLFM -—0.240 2.097

RWFM —-0.375 1.514
m = ﬁ“;—l, that is, the extensions at each end are length
N.—1

=== Of course, there is no Allan estimator beyond half
the length of the data run, namely the region 7 > %, SO
if the “hybrid” called Totvar in (9) is allowed to compute
values for m > Ngil, it reverts to a region defined by the
total variance but not the Allan variance. Computations of
Totvar should not extend beyond 7 = 222 to be consistent
with the limit of the standard Allan estimator, but these

higher-order terms will be considered in Section VIII.

VI. Bias, EQUIVALENT DEGREES OF FREEDOM, AND
FREQUENCY RESPONSE

For accurately estimating the Allan variance, an adjust-
ment must be made to Totvar as defined by (9) and its ex-
tension {2} in (10) to remove a normalized bias (denoted
as nbias) that depends on the ratio = and on whether the
noise type in long-term is FLFM or RWFM rather than
WHFM. The most notable changes using Totvar compared
to Avar involve formulae for nbias as well as increased edf
used in Section VII to obtain lower uncertainty using Tot-
var. Totvar’s nbias and edf can be summarized as [9]:

E {Totvar (1,T)}
oy (1)

T
edf (1) = edf[Totvar (1, T)] = b? —ec,

r
bi = 1=-a—, (1
nbias (1) a7 an)

(18)

where 0 < 7 < % and a, b, and ¢ are given in Table I. The
values of nbias and edf for the important longest-term case
7 = T'/2 are tabulated in Table II. The edf formula (18) is
a convenient, empirical or “fitted” approximation with an
observed error below 1.2% of numerically computed exact
values derived from Monte-Carlo simulation method; the
tabulated values of edf (17'/2) in Table II are exact.

Both Totvar and Avar are invariant to certain manip-
ulations of the vector {z,}. The simplest example is that
we can reverse and/or invert the sequence {z,} without
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Fig. 2. A comparison of frequency responses of Avar (solid curve),
Totvar (shaded curve), and a passband variance consisting of a simple
cascade of a single-pole high-pass followed by a low-pass filter with
identical break points at RC = 7/2 (dashed curve [19)).

affecting either’s result. Unlike Avar’s simple sampling
function, however, Totvar’s data extension causes com-
plicated manipulations of the sampling function itself be-
tween 19 < 7 < % These are derived from formulae in
[8], but unraveling useful information from them is dif-
ficult. It is as informative as, but easier to look at, the
frequency-response function associated with Totvar com-
pared to Avar as in Fig. 2 for a comparison of the effect
of their sampling functions. The dashed curve in Fig. 2
is a constant-(), one-octave pass-band filter response con-
sidered to be ideal for extracting typical power-law noise
levels [18]-[22]. Totvar implements a circular convolution
of Avar’s frequency response, thus significantly reducing
the depth of periodic nulls.

VII. UNCERTAINTY OF TOTDEV

Returning to the topic of characterizing noise, the rea-
son for using Totdev is to very efficiently extract com-
monly encountered integer power-law noise types and
levels of an oscillator’s spectral FM noise. This means
greater certainty in the extraction of these parameters
and others such as drift and quasi-sinusoidal modula-
tion shown in Fig. 3. Assuming statistically independent
noise or error sources, Totdev can be expressed as a lin-
ear combination of these noises and error sources. The
most common measurement-system phase noises (Quanti-
zationPM, WHPM, and FLPM) are proportional to 771,
and the level depends on an upper-bandwidth or cutoff
(Fourier) frequency f3. Frequency noises (WHFM, FLFM,
and RWFM) are proportional to T—%,TO7T+%, respec-
tively. Totdev can serve as an estimator of levels of Quasi-
SinusoidalFM (QSFM) and drift (Dr o 71!), although
these are usually best analyzed separately, estimated, and
removed, so we are dealing only with residuals in the iden-
tification of levels and types of underlying power-law noise
processes.
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Fig. 3. Total deviation plot (or root Totvar) showing power-law noises
as straight lines in addition to other error sources. The goal is to
identify noise sources and accurately estimate their levels with this
kind of frequency stability plot.

We can write a composite variance as:

2 _ 2 2 2
Ocomposite = 0QPM T OwH/rrpM t Ownrm +

(19)

2 2 2 2
OpLFM T ORWFM + 0QsFM + ODrifts

and Total deviation as a composite function is then given

by:

Lo 2 .
Total deviation = A/ Teomposite =

f (UQPM, OWH/FLPM>OWHFM,OFLFM;ORWFM,
2
2
CQSFM,ODrift) = E a2, (20)
p=-2

where the coefficients a,, are usually obtained in a least-
mean-squares sense from a Totdev o vs. 7 plot.

The formulation of the two-sample Allan ensemble av-
erage will contain Ny, average frequencies and only

ﬁr;l) — 1 independent intervals with which to estimate
a noise coefficient. This represents the actual number of
“degrees of freedom”. In general the lo uncertainty for
Ny(m) sets is simply given by:

100

%error, Allan deviation = ——————.
2(Tem — 1)

(21)

This expression is an uncertainty for Adev that is adequate
for a quick upper-bound approximation for a confidence in-
terval or error bars above and below each value of a plot
of Allan deviation o vs. 7. We assume that the probability
distribution is chi-square, and exact confidence intervals
can be determined based on the equivalent degrees of free-
dom (edf) in overlapping statistical averages for a given
noise type, rather than the actual number [3], [23].
Totdev values have edf’s that are greater than those ob-
tained using Adev, and significantly greater at long-term
T-values. Chi-square distribution functions are used for es-
timating confidence of the Allan variance. It turns out that
the distribution functions are slightly narrower than chi-
square using Totdev (which is another of its benefits) at
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long averaging times. Thus a conservative 1o upper-bound
uncertainty on the estimation of a noise coefficient using
Totdev is:

100

V/2(edf)’

where edf values are conveniently derived from (18) and
Table I based on the computation of the Total deviation
as a ratio of 7 to the length of the data run 7', rather than
the Allan deviation’s I—Vﬂmﬂl independent sets as mentioned
earlier.

%error, Total deviation = (22)

VIII. ANALYSIS OF VARIANCE

Consider a function of independent variables. In analy-
sis of variance, we explain the total variability of the func-
tion in terms of each variable. In the discussion here, we
address functionals that depend on a time interval At. At
this point we can recall a conservation principle regarding
the standard sample variance, which states that the mean
of the interval variances plus the variance of the interval
means equals the standard variance of the entire series.
This is true for any process, stationary or not. An analysis
of variance in terms of the mean of k interval variances
and variance of the k interval means is derived in the Ap-
pendix.

The standard variance of finite series {X;;} in the Ap-
pendix is simply a number, partly due to the variance of
k interval means and the remaining part due to the mean
of k interval variances. Now consider intervals of duration
At and a whole data run of length 7. The longest possi-
ble set of equal-length intervals would be At = T'/2; thus
there are k = 2 consecutive interval means. We recog-
nize that the variance of such two-interval means is the
special-case two-sample variance equaling %&Z(T/ 2), half
the sample Allan variance at 7 = T'/2. But half the sam-
ple Allan variance will differ from the standard variance
by a remaining portion attributable to the sample variance
within each of the two intervals by the conservation princi-
ple just stated. By double-sampling at At = T'/4, we find
the two-sample variance (k = 2) now must consist of two
nonoverlapped variance estimates whose average, denoted
as 67 nono(T/4), would be the remaining portion if that
were as far as the data could be sampled. Repeating this
process until there are no remaining interval variances left
unaccounted for, we find that:

L., .
3 (”g,nono(TO) + Ug,nono(zﬂ)) + .. (23)

+62 nono(T/4) + 62 nono(T/2)) = 2,4(T),

where T = mro,m = 27 for j =0,1,...,J — 1, and J is
a positive integer corresponding to the maximum power-
of-2 sample size of y measurements, that is, N, = 27, The
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nonoverlapping estimator of the Allan variance is:

;T _ .
Gynono(2’) = N [G2k2 (27) — Yran—1y25 (27)] "
v i (24)

The composite in (23) is a common property of what
is called a “multiresolution pyramid” [24]. The nonover-
lapped k = 2 condition requires that the T-intervals occur
in power-of-2 increments. This nonoverlapping sample Al-
lan variance would relate directly to the sample standard
variance as in (23) but is inefficient as an estimator [21].
Unfortunately the sample Allan variance from its defini-
tion, for example at At = T/4, calls for three variance
estimates, not two nonoverlapped, because its definition
includes a 7 = At overlap and the straight-forward rela-
tionship to the standard variance is lost rather quickly. In
other words, even for a short series,

S E3T/0) + GUT/) £ %T), (29)
in contrast to (23). Because the definition of the Allan
variance contains one 7T-overlap, we can admit all possible
overlaps to obtain an improved estimator in order to mini-
mize its error bars. Known as the standard “max-overlap”
Allan estimator [3] given as (5), it also departs from a
tractable connection to the standard variance for the same
reason as the original 7-overlap estimator.

Functionals that depend on a time interval At have
such a strong connection to spectral functions that (23)
is a “decomposition” of the sample standard variance
and seems appropriate jargon, so it is commonly used.
In this regard, decomposition of the standard variance is
suited to frequency-domain analysis, and Totvar maintains
a straight-forward relationship with the sample standard
variance. It abides by the conservation principle if we con-
sider an infinite extension by reflection. This means that
the virtual sequence generated by (10) and shown in Fig. 1
recurs indefinitely [9]. Percival and Howe [25] were the first
to point out that, for the case in which Totvar is com-
puted in power-of-2 increments above T'/2 as estimated
from data-run T as in (9), a remaining portion, the sum
of Totvar terms of all power-of-2 intervals 7 > T/2 for
T — 00, adds to the usual multiresolution pyramid to pre-
cisely equal the standard sample variance. These leftover
higher-order components are never actually reported but
are an artifact of infinitely extending the original sequence.
They can be regarded as the sum of 0-frequency aliases,
a remaining “dc” term to make up 62%,(T"). Greenhall et
al. [9] coined the term Remvar(Z) to designate this por-
tion. Totvar beyond 7" soon drops to nearly zero, so the
remaining portion above T' is generally very small. Never-
theless, Remvar accounts for this portion and was used in
the proof of the decomposition of the standard variance.
Summing all the familiar “power-of-2” 7-values in a Totvar
plot leads to exactly twice the standard sample variance,
much in the same way that integrating an estimate of a
spectrum also yields the sample variance.
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Knowledge that we can account for all variations in a
data-run by its standard variance as “decomposed” in cal-
culations of the sample Total variance is especially useful.
For example, at a long-term 7-value of T'/2, an equal re-
maining portion (Totvar(%)=Remvar(%)) would indicate
that we have summarized completely the variations at 7'/2.
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APPENDIX A

Consider a series {X;;} with k intervals each having n

values and means mj,j = 1,..., k. Assume ?kX = 0.
Consequently

k

> m; =0, (A1)

j=1
and make

Xv;j = .’Eij + mj, (AQ)

and

m

=1

The standard variance V' of the data run is denoted V =

%% where
k n
SS = Z Z(.’E” + mj)2. (A4)
j=1i=1
SS’=fol+~~-+mek+nmf+'~+nm%
i=1 i=1 (A5)

plus terms of the form

n n
E 2wijmj = 2m]— E Tig = 0.
=1 =1
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Then
1 11& 37121 i xfk
VeSS R |l A
2 m2 k
my 1
+= + —:—Z $8,7 At)+vm"€ssg(At)+Umv
k k K i=1 {(A6)
where €2, ](At) is the mean of the interval variance

€2, ;(At), and vy, is the variance of the interval means
mj.
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